68 research outputs found

    Merton Rule Gamma Team E Term 2008

    Get PDF
    The London Borough of Merton enacted a greenhouse gas reduction policy requiring large new commercial developments to install renewable generation equipment to meet ten percent of their projected energy needs. The central objective of the project is to provide the Borough of Merton with a working prototype monitoring system that will enable them to track the spread and the performance of renewables in the Borough. Additionally, the project aims to persuade the City of London to adopt a similar system

    20008-2009 SAE Baja Race Vehicle

    Get PDF
    The objective of this project was to design and fabricate a racing vehicle for participation in SAE\u27s Baja World Challenge. The vehicle was designed using mathematical and computer-aided modeling and simulation, resulting in a safe, high-performance vehicle for off-road competition, with a lightweight, high strength, and high durability. The vehicle was fabricated meticulously by the team, using WPI facilities, comprehensively satisfying both the design goals and manufacturing constraints, and will compete in June 2009

    Three Generations Under One Roof? Bayesian Modeling of Radiocarbon Data from Nunalleq, Yukon-Kuskokwim Delta, Alaska

    Get PDF
    Acknowledgments. This research was funded through an Arts and Humanities Research Council grant (AH/K006029/1) awarded to Drs. Rick Knecht, Charlotta Hillerdal, and Kate Britton, and two NERC Radiocarbon Facility grants (NF/2015/1/6 and NF/2015/2/3) awarded to Drs. Rick Knecht and Paul Ledger. Véronique Forbes received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement number 703322. Excavations at Nunalleq have also benefited from the support of the local community who have made us all feel at home in Quinhagak. In particular, we wish to thank Qanirtuuq Incorporated and Warren Jones for logistical support and their consistently warm hospitality. Thanks also to Philip Ashlock who took the aerial image presented in Figure 3. We also wish to acknowledge the contribution of all of the students and researchers who have excavated at Nunalleq between 2009 and 2015. Without their hard work and dedication, in sometimes challenging conditions, this article would not have been possible. Finally, we wish to thank three anonymous reviewers and Robert Kelly for constructive criticism that has helped improved this manuscript. Permission for excavations at Nunalleq was granted by Qanirtuuq Incorporated.Peer reviewedPublisher PD

    Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope

    Get PDF
    The Event Horizon Telescope (EHT) has recently delivered the first resolved images of M87*, the supermassive black hole in the center of the M87 galaxy. These images were produced using 230 GHz observations performed in 2017 April. Additional observations are required to investigate the persistence of the primary image feature—a ring with azimuthal brightness asymmetry—and to quantify the image variability on event horizon scales. To address this need, we analyze M87* data collected with prototype EHT arrays in 2009, 2011, 2012, and 2013. While these observations do not contain enough information to produce images, they are sufficient to constrain simple geometric models. We develop a modeling approach based on the framework utilized for the 2017 EHT data analysis and validate our procedures using synthetic data. Applying the same approach to the observational data sets, we find the M87* morphology in 2009–2017 to be consistent with a persistent asymmetric ring of ~40 μas diameter. The position angle of the peak intensity varies in time. In particular, we find a significant difference between the position angle measured in 2013 and 2017. These variations are in broad agreement with predictions of a subset of general relativistic magnetohydrodynamic simulations. We show that quantifying the variability across multiple observational epochs has the potential to constrain the physical properties of the source, such as the accretion state or the black hole spin

    Impact on mortality and cancer incidence rates of using random invitation from population registers for recruitment to trials

    Get PDF
    Background: Participants in trials evaluating preventive interventions such as screening are on average healthier than the general population. To decrease this 'healthy volunteer effect' (HVE) women were randomly invited from population registers to participate in the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) and not allowed to self refer. This report assesses the extent of the HVE still prevalent in UKCTOCS and considers how certain shortfalls in mortality and incidence can be related to differences in socioeconomic status.Methods: Between 2001 and 2005, 202 638 postmenopausal women joined the trial out of 1 243 312 women randomly invited from local health authority registers. The cohort was flagged for deaths and cancer registrations and mean follow up at censoring was 5.55 years for mortality, and 2.58 years for cancer incidence. Overall and cause-specific Standardised Mortality Ratios (SMRs) and Standardised Incidence Ratios (SIRs) were calculated based on national mortality (2005) and cancer incidence (2006) statistics. The Index of Multiple Deprivation (IMD 2007) was used to assess the link between socioeconomic status and mortality/cancer incidence, and differences between the invited and recruited populations.Results: The SMR for all trial participants was 37%. By subgroup, the SMRs were higher for: younger age groups, extremes of BMI distribution and with each increasing year in trial. There was a clear trend between lower socioeconomic status and increased mortality but less pronounced with incidence. While the invited population had higher mean IMD scores (more deprived) than the national average, those who joined the trial were less deprived.Conclusions: Recruitment to screening trials through invitation from population registers does not prevent a pronounced HVE on mortality. The impact on cancer incidence is much smaller. Similar shortfalls can be expected in other screening RCTs and it maybe prudent to use the various mortality and incidence rates presented as guides for calculating event rates and power in RCTs involving women

    Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign

    Get PDF
    In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109Me. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87’s spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.http://iopscience.iop.org/2041-8205am2022Physic

    Selective dynamical imaging of interferometric data

    Get PDF
    Recent developments in very long baseline interferometry (VLBI) have made it possible for the Event Horizon Telescope (EHT) to resolve the innermost accretion flows of the largest supermassive black holes on the sky. The sparse nature of the EHT’s (u, v)-coverage presents a challenge when attempting to resolve highly time-variable sources. We demonstrate that the changing (u, v)-coverage of the EHT can contain regions of time over the course of a single observation that facilitate dynamical imaging. These optimal time regions typically have projected baseline distributions that are approximately angularly isotropic and radially homogeneous. We derive a metric of coverage quality based on baseline isotropy and density that is capable of ranking array configurations by their ability to produce accurate dynamical reconstructions. We compare this metric to existing metrics in the literature and investigate their utility by performing dynamical reconstructions on synthetic data from simulated EHT observations of sources with simple orbital variability. We then use these results to make recommendations for imaging the 2017 EHT Sgr A* data sethttp://iopscience.iop.org/2041-8205Physic

    The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

    Get PDF
    Abstract: Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker–Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 103.3–105.5 rad m−2), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 105 rad m−2 at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 105 rad m−2 at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 105 rad m−2 at 3 mm and −4.1 to 1.5 × 105 rad m−2 at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA
    corecore